Project 6, Program Design

1. This program will be graded based on whether the required functionality were
implemented correctly instead of whether it produces the correct output, for the
functionality part (80% of the grade).

Modify selection_sort.c so that it includes the following functions:
void selection sort(int *a, int n);
int *find largest (int *a, int n);

void swap (int *p, int *q);

selection_sort function: it should call find_largest function and swap function.

find_largest function: when passed an array of length n, the function will return a
pointer to the array’s largest element. The function should use pointer arithmetic — not
subscripting — to visit array elements. In other words, eliminate the loop index variables
and all use of the [] operator in the function.

swap function: when passed the addresses of two variables, the function should

exchange the values of the variables:

swap(&i, &j); /* exchange values of i and j */

Your program will call find_largest function and swap function in selection_sort
function.

2.

A vector is an ordered collection of values in mathematics. An array is a very
straightforward way to implement a vector on a computer. Two vectors are multiplied
on an entry-by-entry basis, e.g. (1, 2, 3) * (4, 5, 6) = (4, 10, 18).

Write a program that include the following functions. The functions should use pointer
arithmetic (instead of array subscripting). In other words, eliminate the loop index

variables and all use of the [] operator in the functions.

void multi vec (int *vl, int *v2, int *v3, int n);



int comp vec(int *vl, int *v2, int n);

The multi_vec function multiplies vectors v1 and v2 and stores the result in v3. nis the
length of the vectors.

The comp_vec function compares vl and v2, return 1 if vectors v1 and v2 are equal
(their corresponding components are equal), and 0 otherwise. n is the length of the
vectors.

In the main function, ask the user to enter the length of the vectors, declare two arrays
with the length, read in the values for two vectors, and call the two functions to
compute the multiplication and comparison of them. The main function should display
the result.

Enter the length of the vectors: 5
Enter the first vector: 3 4 9 1 4
Enter the second wvector: 5 7 2 6 8
Output:

The multiplication of the vectors is: 15 28 18 6 32
The vectors are not the same.

Before you submit:

1. Compile with —Wall. Be sure it compiles on circe with no errors and no warnings.
gcc —Wall selection_sort.c

gcc —Wall vector.c

2. Be sure your Unix source file is read & write protected. Change Unix file permission
on Unix:

chmod 600 selection_sort.c

chmod 600 vector.c

3. Test your program with the shell scripts on Unix:

chmod +x try_sort
Jtry_sort



chmod +x try_vector
./try_vector

Total points: 100 (50 points each problem)

N

A program that does not compile will result in a zero.
Runtime error and compilation warning 5%
Commenting and style 15%

Functionality 80%

Programming Style Guidelines

The major purpose of programming style guidelines is to make programs easy to read and
understand. Good programming style helps make it possible for a person knowledgeable
in the application area to quickly read a program and understand how it works.

1.

2.

o

Your program should begin with a comment that briefly summarizes what it does.
This comment should also include your name.

In most cases, a function should have a brief comment above its definition
describing what it does. Other than that, comments should be written only needed
in order for a reader to understand what is happening.

Information to include in the comment for a function: name of the function,
purpose of the function, meaning of each parameter, description of return value (if
any), description of side effects (if any, such as modifying external variables)
Variable names and function names should be sufficiently descriptive that a
knowledgeable reader can easily understand what the variable means and what the
function does. If this is not possible, comments should be added to make the
meaning clear.

Use consistent indentation to emphasize block structure.

Full line comments inside function bodies should conform to the indentation of
the code where they appear.

Macro definitions (#define) should be used for defining symbolic names for
numeric constants. For example: #define PI 3.141592

Use names of moderate length for variables. Most names should be between 2
and 12 letters long.

Use underscores to make compound names easier to read: tot_vol or

total volumn is clearer than totalvolumn.



